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• Land use responds dynamically to
changes in climate.

• Arable land is expected to decrease in
response to warming in the Thames.

• Land use changes dynamically affect
water quality.

• NO3 concentration is expected to be re-
duced by 6% in the lower Thames by
the 2050s.

• P concentration is expected to be re-
duced by 5% in the lower Thames by
the 2050s.
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The combined indirect and direct impacts of land use change and climate change on river water quality were
assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-
term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic
alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to
estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land
use is considered as static parameter, according to the model results, climate change alone should reduce the
average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to
reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and
should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a
reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that
these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced
by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic
co-evolution of land usewith climate, the average nitrate concentration is expected to be decreased by around 6%
by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus
concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s),
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nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to
change in the upper thames and increase by 5% in the lower Thames.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Human action has considerably modified the Earth's environments
and landscape, and continues to do so. Between one-third and one-
half of the Earth's land has been transformed by human interventions
(Vitousek et al., 1997). Human-induced land use/land cover changes
alter processes such as runoff generation, nutrient cycles and soil ero-
sion to a similar or greater extent than other major drivers, such as cli-
mate change (Sterling et al., 2013). In recent centuries, land use change
has had much greater effects on ecological processes than climate
change (Dale, 1997).

Although land use is widely acknowledged as a key driver of change
in catchment processes andproperties, it is challenging to predict how it
will change in the future subject to stressors such as climate change,
technology change and human population increases. Its future evolu-
tion is uncertain (Mehdi et al., 2015), as land use and landmanagement
are changed to adjust to changes in climate, policy, food demand etc.
Natural vegetation also responds dynamically to climatic variations
(Ruiz-Pérez et al., 2016). These adaptations can have hydrological and
ecological effects (Dale, 1997).

One example of widespread human-induced land use change is ag-
riculture.Modern agriculture is recognised as oneof themost significant
non-point sources of water pollution (Johnes, 1996), especially for nu-
trients like nitrogen and phosphorus (Tong and Chen, 2002). At the
global scale, agriculture is the economic sector that is likely to suffer
the greatest financial impact as a result of climate change (Lobell et al.,
2011). Farmers are expected to adapt to climate change by switching ac-
tivities to those that are most profitable, given the new conditions they
will face (Fezzi et al., 2015). This adaptation is likely to have a strong ef-
fect on riverwater quality (Fezzi et al., 2015), for example by increasing/
decreasing nitrogen leaching to the aquifer, or by altering the nutrient
export from agricultural soils.

Scenarios are commonly used as tools to examine plausible develop-
ments of change (Mehdi et al., 2015). Nevertheless, scenarios are usual-
ly characterised by a high degree of subjectivity and do not describe the
response of the land use to climatic changes. An alternative to under-
stand the response of land use to drivers such as climate variability is
through the use of spatially-explicit land use allocation models. These
models estimate the future evolution of land use/land cover through
land use conversion, based on climate, population and peoples' re-
sponses to economic opportunities, as mediated by institutional factors
(Lambin, 1997; Lambin et al., 2001).

Despite the importance of climatic and socio-economic changes on
water resources and water quality management, there is still a strong
need for quantitative approaches that can evaluate the impact of these
drivers of change and assist catchment and rivermanagement, compen-
sating for the lack of objectivity that socioeconomic and emission sce-
narios holds. Moreover, only a few studies so far have presented
integrated assessments of the joint impact of climate and land use
change onwater quality. Other studies evaluated the impacts of climate
change and/or land use change in the Thames catchment or in other
catchments in theUK, although none assessed the impact of the dynam-
ic co-evolution of land use with long-term climatic changes, to the au-
thors' knowledge. The findings of this study in terms of phosphorus
substantially agreewith the ones of Crossman et al. (2013a, 2013b) con-
centration, who used the same model (INCA – INtegrated CAtchment
model) but a differentmethodology, with a set of static land use scenar-
ios. Bussi et al. (2016b) also provided estimates of the impacts of climate
and land use change on total phosphorus concentration using the INCA
model and a scenario-neutral methodology (i.e. a methodology that
does not use emission scenarios or socio-economic scenarios to drive
a hydrological model, but rather makes a sensitivity analysis on the
model input), but employing a set of static land use change scenarios
that were not linked to agricultural supply and demand.

The objectives of this study are:

- To develop amethodology for the combined evaluation of direct and
indirect impacts of climate change on river water quality, taking into
account the response of land use and agriculture to changes in cli-
mate.

- To understand the relative importance of the direct and indirect im-
pacts of climate change on nitrate and phosphorus concentration in
the River Thames.

A land use allocationmodel, embeddedwithin an integratedmodel-
ling platform, is coupled to a hydrological and water quality model to
assess the impact of a changing climate on water quality taking into ac-
count the land use/land cover response to changing crop suitability and
profitability under the same climatic variations. This is donebymeans of
a scenario-neutral methodology (Bussi et al., 2016a, 2016b;
Prudhomme et al., 2010), which allows the system response to changes
in climate to be assessed without having to rely on specific climate and/
or land use scenarios. The water quality model used is the INCA model
for nitrogen and phosphorus (Wade et al., 2002a, 2002b; Whitehead
et al., 1998a, 1998b). This model is applied to the River Thames catch-
ment (UK).

2. Study area

This paper focuses on River Thames catchment upstream of London
(Figs. 1, 9, 927 km2), located in southern England and draining towards
the city of London. This river provides freshwater supply to fourteen
million people (Whitehead et al., 2013), most of whom live down-
stream within London, and receives treated wastewater from approxi-
mately three million people (Kinniburgh and Barnett, 2009). The
climate is temperate with Atlantic and continental influences. The aver-
age annual precipitation is 730 mm (1960–2014, with a minimum of
538 mm in 1973 and a maximum of 974 mm in 2000) and the annual
average temperature is 10.7 °C (1960–2014, minimum: 8.6 °C in 1963,
maximum 12.1 °C in 2014), with a difference of around 1.5–2 °C be-
tween the interfluve and the valleys. The average summer temperature
is 16.5 °C and the average winter temperature is 4.7 °C. The average
daily flow is 67 m3 s−1 at the catchment outlet in London, with a daily
Q5 (discharge exceeded only 5% of the time) of 206 m3 s−1. High
flows usually occur in winter to early spring and low flows in summer
to late autumn (Bussi et al., 2016a).

The catchment geology is dominated by chalk, with limestone in the
headwaters, and clay/mudstone and sandstone also present both up-
stream and downstream of the chalk area (Bloomfield et al., 2011).
The catchment is dominated by arable land alternated with grassland
in its upper part (around 80% of the catchment draining to reach 4 in
Fig. 1 is dedicated to arable agriculture or improved grassland), with lit-
tle urban land in the headwaters. The urban land portion increases in
the Western part of the catchment (up to 30% of the lowermost sub-
catchments in Fig. 1). Around 13% of the catchment is covered by
woodland.

The results of this study are shown at two reaches: reach 4, repre-
sentative of the upper Thames, and reach 19, representative of the
lower Thames. Reach 4 drains sub-catchments 1 to 4, which have an ex-
tension of 1610 km2. The land use is predominantly agricultural, with

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Location of the River Thames catchment (UK). The INCAmodel sub-catchments are
also shown. The grey areas show the location of the urban areas.
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50% of arable land and 28% of improved grassland. Forest land is 6% of
the total area. Only 5% of the catchment is occupied by urban land,
with less than 300,000 population equivalent discharging effluents
into the river. Reach 19 drains sub-catchments 1 to 19. The part of the
Thames catchment drained by reach 5 to 19 has an extension of
6540 km2. The land use is also dominated by agriculture, with a portion
of arable land of 42% and 28% of improved grassland. Forest land is 11%
and urban land is also 11%. The population equivalent of this portion of
catchment is slightly less than 3,000,000.The stream flow datawere ob-
tained from the National River Flow Archive (NRFA). These data are
freely available to download from the NRFA website. In particular,
gauged daily flow data were used, i.e., mean river flow in cubic meters
per second in a water-day, (09.00 to 09.00 GMT). The period of record
is variable, depending on the station. For example, for the Thames at
Teddington (South-East London), data are available since the late 19th
century. An overview of riverflowmeasurement techniques and hydro-
metric practice is provided on the website of the NRFA. Flows are typi-
cally calculated the basis of measurements at 15-minute intervals.
These high resolution data are used to calculate the mean gauged
daily flow.

Daily rainfall and temperature data were gathered from the Met Of-
fice Integrated Data Archive System (MIDAS), which is freely available
for on-line access to UK academics. These data were collected through
a network of meteorological stations spread all over the Thames catch-
ment (and the rest of the country). Detailed information on the collec-
tion methods and quality control is reported on the Centre for
Environmental Data Analysis (CEDA) website. Most measurements are
made with full traceability to national or international standards. The
daily precipitation, minimum temperature and maximum temperature
data from all the available stations within the Thames catchment were
interpolated on a 5 × 5 km grid using the Thiessen polygon method,
and then the daily average precipitation and temperature series were
computed and used as model input.

All water quality data (nitrate, phosphorus and suspended solid con-
centration in the river) were obtained from the Water quality data ar-
chive (WIMS), collected by the Environment Agency. Samples were
taken from sampling points round the country, including: agricultural,
coastal, estuary, rivers, lakes, ponds, canals, sewage discharges, trade
discharges, pollution investigation points and waste sites. The archive
provides data on these measurements and samples dating from 2000
to November 2016. Samples were taken with a frequency of around
four weeks. Furthermore, in order to complement this dataset and
cross validate the model with data collected by a different agency, the
Centre for Ecology and Hydrology (CEH) Thames Initiative (TI dataset
was employed, spanning from 2009 to 2014. More information is pro-
vided on Bowes et al. (2012), Bussi et al. (2014) and Whitehead et al.
(2015). Itmust be pointed out that other authors have already acknowl-
edged the limitations of such a coarse sampling scheme (Letcher et al.,
1999; Walling andWebb, 1981), especially when employed in the cali-
bration ofmodels. These studies have shown thatmonthlywater quality
sampling regime can lead to underestimated pollutant loading bymore
than 50%. To overcome this limitation, the results of this study are
expressed in relative terms (e.g., in terms of % change) rather than in ab-
solute terms, so that the bias introduced by the use of these observa-
tions is eliminated or, at least, reduced.
3. Methodology

3.1. Land use allocation model

Land use allocation was simulated using the IMPRESSIONS Integrat-
ed Assessment Platform (IAP), which is an update of the CLIMSAVE IAP
(Harrison et al., 2016, 2015, 2014; Holman et al., 2016). The platform in-
tegrates a suite ofmodels to assess the impacts of, and adaptation to, cli-
mate and socio-economic change across a range of sectors including
urban development, coastal and fluvial flooding, agriculture, forests,
water resources and biodiversity (see Fig. 2). The computationally effi-
cient models within the IAP (details of which can be found in Holman
andHarrison, 2011) have been validated and subject to extensive sensi-
tivity (Kebede et al., 2015) and uncertainty (Brown et al., 2014; Dunford
et al., 2014) analyses. The platform is run across the European Union
countries plus Norway and Switzerland on a 10’×10’ grid (approxi-
mately 16 km×16km) of over 23,000 gridcells (with each grid cell con-
tainingmultiple soil types), and over 4 time slices (baseline, 2011–2040,
2041–2070 and 2071–2100).

The rural land use allocation metamodel in the IAP (Audsley et al.,
2014) is based on the Silsoe Whole Farm Model (SFARMOD-LP -
Annetts and Audsley, 2002) a constrained optimising linear program-
ming model of long-term land use. The model spatially allocates land
uses (intensive arable, intensive grassland, extensive grassland, man-
aged forest, unmanaged forest and unmanaged land), and associated
rainfed and irrigated crops and tree species, based on relative economic
profitability and subject to a range of constraints. These include areas
subject to urban development, flood risk, environmentally protected
areas (such as Natura 2000 sites) and water resource availability. The
model works iteratively to find a spatial land use allocation solution
that meets demand for the commodities of timber, meat, milk, fibre,
protein, roots, oils and cereals across Europe, in response to spatial sim-
ulated changes in profitability driven by changing crop yields, fodder
production (influencing milk and meat production) and timber yield.
Price factors are used to stimulate or reduce production of a given com-
modity across Europe tomeet demand (bymaking its productionmore/
less economically advantageous). In the context of the current study,
land use in the Thames catchment can change as a result of intra- and
inter-catchment changes in crop and timber yields and profitability,
reflecting the large-scale markets of such commodities where prices
and supply are driven by national and international demand. For this
study, the baseline socio-economic conditions within the IAP were
maintained, so that European food demand (driven by population,
GDP and dietary preferences and net imports) and agricultural technol-
ogy (crop breeding, mechanisation, etc.) remained constant. The simu-
lated baseline land use for the River Thames catchment (i.e., the current
land use) is shown in Fig. 3.



Fig. 2. Schematic showing the structure of the linked models within the IMPRESSIONS IAP2.
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3.2. Water quality model

The INCAhydrological andwater qualitymodel was employed to re-
produce the water quality dynamics of the River Thames (UK). This
modelwas chosen because it combines the simplicity required to repro-
duce water quality processes at the catchment scale with the accuracy
that is necessary to produce estimates of flow and nutrient concentra-
tion. Furthermore, it is a very well-known water quality model, used
in several catchments in the UK and in the rest of the world since the
late 90s, with an extensive body of publications to support it (some of
which are detailed below). The INCA model is particularly suitable for
the scale of this study, as it was developed as a catchment-scale
model, with the possibility of disaggregating the catchment in several
sub-catchments. Furthermore it offers thepossibility of analysing the ef-
fect of land use change on water quality, given that different land use
units with different characteristics and parameters can be definedwith-
in each sub-catchment.

The INCA model was initially developed as a nitrogen (Whitehead
et al., 1998a) and phosphorus (Wade et al., 2002b)model, although sev-
eral other sub-models were added later, such as a soil erosion and sed-
iment transport sub-model (Lázár et al., 2010), a faecal indicator model
Fig. 3. Simulated percentage land use of the River Thames catchment per sub-catchm
(Whitehead et al., 2016) and an organic contaminant model (Lu et al.,
2016). The hydrological and water quality sub-models of INCA have
been applied to several basins across the UK and Europe, and, in partic-
ular, to the River Thames catchment (Bussi et al., 2016b; Crossman et al.,
2013b; Jin et al., 2012; Lu et al., 2016; Whitehead et al., 2013, 2016).
INCA is a semi-distributed process-based model which simulates the
transformation of rainfall into runoff and the propagation of water
through a river network (Wade et al., 2002a). Its inputs are daily time
series of precipitation, temperature, hydrologically effective rainfall,
and soil moisture deficit. The latter two are estimated using another
semi-distributed hydrological model, called Precipitation, Evapotrans-
piration and Runoff Simulator for Solute Transport model - PERSiST
(Futter et al., 2014), which is specifically designed to provide input se-
ries for the INCA family ofmodels. It is based on a user-specified number
of linear reservoirs which can be used to represent different hydrologi-
cal processes, such as snow melt, direct runoff generation, soil storage,
aquifer storage and stream network movement. The description of its
application to the river Thames can be found in Futter et al. (2014).

The nitrogen sub-model of INCA (Wade et al., 2002a; Whitehead
et al., 1998a, 1998b) reproduces the cycle of nitrogen from its main
sources (atmospheric deposition, fertilisers, wastewater, etc.) to the
ent under current climate (i.e., no alterations of precipitation and temperature).
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river. The most important soil processes are included, such as denitrifi-
cation, nitrification, immobilisation, mineralisation and leaching to-
wards the aquifer. Nitrification and denitrification processes in the
streams are also taken into account. The phosphorus sub-model of
INCA (Wade et al., 2002b) incorporates themain sources of phosphorus,
both diffuse (fertilisers) and point (wastewater), as well as the main
processes involving phosphorus, such as sorption/desorption. The
phosphorus sub-model of the INCA model also includes a sediment
sub-model, which computes the detachment of soil particles from the
hillslopes and their transport towards the catchment outlet. The INCA
model has already been applied to the River Thames catchment
(Crossman et al., 2013b; Jin et al., 2012; Lu et al., 2016; Whitehead
et al., 2013, 2016). In this study, the same model structure is used,
where the catchment is divided into 22 sub-catchments and the
river into 22 corresponding reaches (Fig. 1). The land uses of the
Thames catchment were categorised as follows: forest (including
both managed and unmanaged forest), unfertilised grassland
(i.e., extensive grassland), fertilised grassland (i.e., intensive grassland),
arable (i.e., intensively farmed land) and urban. The land use configura-
tion used for model calibration was obtained from the IAPmodel rather
than from land use maps to ensure consistency between the baseline
and the scenario results.

Based on a prior general sensitivity analysis of the INCAmodel of the
River Thames (Spear andHornberger, 1980;Whitehead et al., 2015) and
the modeller's knowledge, the following 22 parameters were identified
as the most influential:

- Hydrology (Bussi et al., 2016a; Jackson-Blake and Starrfelt, 2015):
rainfall excess proportion (the proportion of excess rain that is con-
verted into direct runoff), soil water and ground water residence
times (i.e., flow velocity for sub-superficial flow and base flow),
maximum infiltration rate, flow-velocity coefficient (the coefficient
of a power law used to calculate channel flow velocity from dis-
charge), flow threshold for saturation excess direct runoff.
Fig. 4. INCAmodel calibration and validation results at two locations on the River Thames. Obser
dataset, weekly nitrate and total phosphorus, 2009–2014) and WIMS (Water Information Man
shaded area represents the calibration time period.
- Nitrogen (Jin et al., 2012;Wade et al., 2002a): soil denitrification co-
efficient, nitrification,mineralisation and immobilisation rates in the
soil, nitrogen uptake rate by crops, groundwater nitrate concentra-
tion, instream nitrification rate and instream denitrification rate,

- Sediment (Bussi et al., 2016a; Lázár et al., 2010) splash and flow ero-
sion parameters (defining the erodibility of soils), flow erosion di-
rect runoff threshold (defining the threshold above which flow
erosion occurs), transport capacity scaling factor (which adjusts
the transport capacity on the hillslopes), transport capacity non-
linear coefficient (which adjusts the transport capacity on the
hillslopes), instream sediment transport parameters (which adjust
the transport capacity in the channel)

- Phosphorus (Bussi et al., 2016a; Jackson-Blake and Starrfelt, 2015):
soil matrix sorption coefficient (which adjusts the sorption capacity
of the soils), water column sorption coefficient (which adjusts the
sorption capacity of the water column), stream bed sorption coeffi-
cient (which adjusts the sorption capacity of the be sediment).

More information on INCA model sensitivity analysis and Monte
Carlo calibration can be found in Jackson-Blake and Starrfelt (2015)
and Bussi et al. (2016a).

The feasible ranges of variation of these influential model parame-
ters, informed by previous studies, were sampled randomly, and
10,000 different parameter sets were generated. Subsequently, the
INCA model was run with each of these parameter sets, and its perfor-
mancewas assessed based on observed values of flow andwater quality
at two stations (reach 4 and reach 19), using data from 2010 to 2014.
The metric used for model assessment was the Nash and Sutcliffe Effi-
ciency (NSE - Nash and Sutcliffe, 1970) for the flow and the percent
bias (PBIAS - Bennett et al., 2013) for nitrate and sediment on the
daily results. The best model was selected and used in the rest of the
study. The results are shown in Fig. 4, where the grey-shaded area rep-
resents the calibration period (2010–2014), which was chosen to
veddata:NRFA (National River FlowArchive, dailyflow, 2000–2015), TI (Thames Initiative
agement System database, monthly nitrate and total phosphorus, 2000–2015). The grey-



Table 1
Performance indices of the INCA model (calibration and validation). NSE: Nash and Sutcliffe Index, R2: correlation coefficient, PBIAS: percent bias.

Reach Flow NSE Flow PBIAS Nitrate R2 Nitrate PBIAS Phosphorus R2 Phosphorus PBIAS

Calibration
2010–2014

Reach 4 0.81 3 0.49 −1 0.30 12
Reach 19 0.85 7 0.49 0 0.18 31

Validation
2000–2010

Reach 4 0.73 1 0.56 −4 0.28 22
Reach 19 0.79 11 0.56 2 0.42 53

Fig. 5. Scheme of the methodology used in this study.
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ensure that themodel reflects current, rather than historical, catchment
conditions, in particular, wastewater treatment standards, fertiliser and
manure use and stocking densities. The performance indices for calibra-
tion and validation are shown in Table 1.

As Fig. 4, the model results can be considered generally satisfactory
in terms of reproduction of the system response to climatic variations,
given the uncertainty that characterises both model results and mea-
sured data values. It is important to note that this model is not used to
provide daily forecasts of nitrate and phosphorus concentrations in
the River Thames, but rather to disentangle the average catchment re-
sponse to long-term changes in the climatic conditions and its conse-
quent modifications of the land use.

Concerning the phosphorus simulation reach 19, the PBIAS is low
compared to the thresholds that are usually employed in hydrological
modelling (Moriasi et al., 2007), especially for validation, although the
R2 (correlation coefficient) shows relatively high values (0.42 for valida-
tion). The interpretation of this is likely to be the impact of phosphorus
effluent concentrations on the river concentration. At this location in the
river, a large amount of wastewater effluent is discharged into the river
and impacts greatly the phosphorus concentration. In this study, we
used a constant phosphorus concentration for the effluent as input to
the water quality model, due to the lack of better data. However, this
concentration is likely to vary in time, and it was probably higher in
the early years of the 2000s and lower in the present, due to the im-
provements in phosphorus stripping techniques (as the decreasing
trend in the observed concentration seems to show). Using an average
concentration as model input can therefore introduce an important
bias. Although this is likely to affect the results of this study, the phos-
phorusmodel results for reach 19 are shown anyway, since themethod-
ology employed in this paper is still valid.

3.3. Scenario-neutral methodology for climate variability impact
assessment

A scenario-neutral approach was used to assess the impact of long-
term climate change and climate variability on land use andwater qual-
ity. As opposed to top-down approaches, which use climate model out-
puts to drive hydrological and environmental models, the scenario-
neutralmethodology is based on a bottom-up approach. Environmental
vulnerability indicators (in this case, river water quality) are used as
end-variable, and a response surface of these indicators to changes in
some climatic features is built using environmental models (Singh
et al., 2014). The likelihood of these climatic changes is then assessed
by integrating information about future climate (often from climate
models) into the results of this methodology (Prudhomme et al.,
2010). Themain advantages of this methodology is that a specific emis-
sion scenario or a specific climatemodel do not need to be selected from
the available tools (which is often a difficult and slightly arbitrary task)
and it does not need a bias-correction procedure (which can also be
complex to perform in certain cases).

In this study, the following methodology was set up. First, the cli-
matic stressors most likely to impact water quality were identified. Al-
terations in these climatic stressors were then applied to the current
climatic observed series of daily precipitation and temperature from
1960 to 2015. This allowed the creation of a number of combinations
of perturbed input time series (precipitation and temperature) which
were used to drive both the land use model and the water quality
model (Fig. 5). The final result was a set of nitrate and phosphorus con-
centration time series resulting from all the combinations of the altered
climatic time series. The advantages of using this methodology are that
no climate model output is required to drive the land use and water
quality models, and therefore no assumptions have to be made on fu-
ture greenhouse gas emission/concentration scenarios, and no bias cor-
rection of a climate model output is required (Prudhomme et al., 2010).
Furthermore, in this particular case, this methodology seems evenmore
appropriate because this study focuses on long term changes, without
necessarily having to relate the resulting changes in land use and
water quality with a future time horizon or a prescribed time by
which the scenario is thought to occur.

Alterations to average precipitation and average temperature were
introduced by means of a uniform “delta change” transformation (Hay
et al., 2000) applied to observed daily precipitation and temperature
values. The alterations were chosen to cover the projected changes in
annual precipitation and temperature by climate models, but also to
stress the system further, with the aimof assessing not only future plau-
sible changes but also the response of the system under very extreme
conditions. Following Christensen et al. (2007), for Northern Europe
the annual temperature is expected to increase up to 5.3 °C by 2080–
2099, while annual precipitation is expected to vary between 0 and
+16% (although a decrease in summer precipitation is also forecasted,
up to 21%). Therefore, seven alterations were applied to the tempera-
ture (from +0 °C to +6 °C with a 1 °C step) and eight alterations to
the precipitation time series (from −30% to +40% with a 10% step),
creating in total 56 combinations of manually-altered climate. For
each time series, the IAP was first run to compute the corresponding
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land use for the Thames catchment given the long-term climatic
changes dictated by the scenario-neutral climatic alterations. Then,
the water quality model was run, driven by the altered precipitation
and temperature time series and using the land use map obtained
at the previous step. An additional model run was also carried out
for each of the 56 climate alteration combinations, using altered
climate but unaltered land use (i.e., the current land use), in order to
isolate the effect of considering land use as a dynamic variable. The
results of the water quality model were analysed in terms of average
nitrate concentration and average total phosphorus concentration
(the averages were computed over all the time period considered,
i.e. 1960–2015), at two locations on the River Thames (reach 4:
Thames at Farmoor – i.e., upper Thames, and reach 19: Thames at
Runnymede – i.e., lower Thames).

Although, as said above, this methodology does not require the use
of climate model results as inputs to the modelling, these are used
to compute the likelihood of the catchment response to climatic
alterations by assigning a probability of occurrence to the combinations
of climate alterations considered in this study. The probabilistic change
factors from the UK climate projections 09 (UKCP09, Murphy et al.,
2009) were used to determine the likelihood of the precipitation and
temperature changes used to drive the land use and water quality
models. The UKCP09 scenarios were developed by the UK Met Office
to provide climate change projections over theUK accounting for uncer-
tainties in global climate models. These projections are based on the
results of the HadCM3 coupled ocean-atmosphere Global Circulation
model (Gordon et al., 2000), which was run as a perturbed physics
ensemble to sample model and parameter uncertainties (Murphy
et al., 2007). HadCM3 projections were downscaled on a 25 km grid
over seven overlapping 30-yr time periods based on an ensemble of
11 variants of the regional climate model HadRM3, and a statistical
procedure was applied to build local-scale distributions of changes for
various climate variables. UKCP09 gives projections for each of three
of the IPCC's Special Report on Emissions Scenarios (SRES) scenarios
(A1FI - called “high” in UKCP09, A1B – “medium” and B1 – “low”).
Among the available outputs, expected changes in average precipitation
and temperature following the different emission scenarios are given
(change factors). The change factors were used to assess the likelihood
of the water quality alterations that follows the climatic alterations
detailed above. No daily or monthly time series were employed, and
no downscaling/bias correction is required within the framework of a
scenario-neutral methodology. The likelihood of changes in water
quality was computed by comparison with climatic properties taken
from a set of 10,000 change factors for the River Thames catchment
under the A1FI emission scenario (themost severe scenario) for several
future time slices (from the 2020s to the 2080s). These change factors
were downloaded from the UK climate projections website of the Met
Office.
Fig. 6. Percentage arable area per grid cell simulated by the IAP2 model for A: b
4. Results

4.1. Impacts of climate variability on land use

As the IAP model simulates a decrease in arable area across the
Thames catchment and the UK with increasing temperature (Fig. 6), it
simulates a corresponding significant increase in arable area in parts
of Central and Eastern Europe. Higher crop yields due to increased tem-
peratures result in greater relative profitability of arable land in these
regions. Therefore growing arable crops within the UK no longer maxi-
mises profit so that such land is converted to fertilised (intensive) grass-
land. However, themodel indicates that a large increase in temperature
of+6 °Cwould cause a return of arable agriculture in the Thames catch-
ment (although not at the current level). Fig. 6C illustrates an expansion
of the arable area under such conditions in Europe as increased drought
and heat stresses reduce crop yields and productivity across much of
Europe. As a result, demand for arable commodities is not met and in-
creased profitability of arable land within the UK prompts conversion
of grassland to arable land.

Figs. 7 and 8 show the simulated arable, fertilised grassland, non-
fertilised grassland and forest areas of the River Thames catchment
across the range of precipitation and temperature changes, expressed
as a percentage of the undeveloped catchment area. Fig. 7 shows the re-
sponse of the land use to change in climate for the upper Thames,
i.e., the sub-catchment drained by reach 4 (Thames at Farmoor). Fig. 8
shows the response of the lower Thames catchment (i.e., the part of
the Thames catchment drained by the River Thames between reach 4
and reach 19 – Thames at Runnymede). The baseline land use fractions
are shown in Fig. 3. The results show that the simulated agricultural
land use in the Thames catchment is highly sensitive to small changes
in climate in Europe. In particular, both the arable land and the fertilised
grassland fractions of the Thames catchment appear to be especially
sensitive to increases in temperature and to increases in precipitation
under conditions of low temperature increases.

Even a small increase in temperature causes a sharp decrease in ar-
able land, and corresponding increase of fertilised grassland. As temper-
ature increases above ~2 °C, the arable area decreases to ~0% in most of
the catchments under all precipitation scenarios. This does not reflect
the inability of such arable crops to grow under these conditions, but
rather that it is more profitable to meet demand in other parts of
Europe.

4.2. Impacts of climate variability on water quality

The INCA model results provided an assessment of the response of
the River Thames water quality to changes in annual precipitation and
temperature. In Figs. 9 and 10 the response surfaces are shown for the
two different river reaches (Fig. 9: reach 4 – Thames at Farmoor,
aseline (current) climate, B: +3 °C, and C: +6 °C and −30% precipitation.



Fig. 7. Response of the landuse in the upper Thames catchment to long-term changes in the climate (sub-catchment drained by reach 4 – Thames at Farmoor), in terms of land use fraction
of the catchment. Black lines are surface contour lines (bold lines every 10% land use fraction, thin lines every 2.5%).
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Fig. 10: reach 19 – Thames at Runnymede), and for the two water qual-
ity variables analysed in this paper (nitrate concentration: left part of
the plots, total phosphorus concentration: right part of the plots). Two
water quality response surfaces are shown for each variable: the re-
sponse under fixed (baseline) land use representing the direct impact
of climate change on hydrological functioning, nutrient transport and
in-river processes; and the response under variable land use that also
includes the indirect changes associated with long-term autonomous
land use change and associated changed agricultural nutrient inputs.

Nitrate in the Thames catchment is mainly due to diffuse sources
(fertilisers used in agriculture, Jin et al., 2012), hence its concentration
in the river is proportional to runoff. An increase in temperature in-
creases evapotranspiration and, as a consequence, causes a decrease in
runoff (Figs. 9 and 10). In the same way, a decrease in precipitation en-
tails a decrease in runoff and thus a decrease in nitrate concentration.
Furthermore, a decrease stream flowmeans reduced velocity, increased
residence times andhence enhance the denitrification processes, reduc-
ing nitrate concentration (Jin et al., 2012). On the contrary, the main
sources of phosphorus in the Thames are household effluents
discharged by sewage treatment plants (Crossman et al., 2013b;
Whitehead et al., 2013), and therefore phosphorus concentration is in-
versely proportional to flow (i.e., less flow means less dilution capacity
and higher phosphorus concentration). This means that an increase in
temperature causes an increase in phosphorus concentration, while an
increase in precipitation causes a decrease in phosphorus concentration
(Figs. 9 and 10).

The change in nitrate concentration is inversely proportional to tem-
perature and directly proportional to precipitation, with a similar pat-
tern of control exerted by both drivers of change (changes in
precipitation and temperature), at least within the range of variations
considered in this study. On the other hand, phosphorus has a different
behaviour, with marked increases due to a decrease in precipitation,
Fig. 8. Response of the land use in the lower Thames catchment to long-term changes in the cli
Runnymead), in terms of land use fraction of the catchment. Black lines are surface contour lin
and also a direct proportionality with temperature, although weaker
than with precipitation. This is more evident at reach 19 (lower
Thames), while for reach 4 (upper Thames) the pattern is not as clear,
and the response surface gradient is not homogeneous.

From Figs. 9 and 10 it can also be observed that some important dif-
ferences inwater quality behaviour arise by allowing the land use to au-
tonomously adjust to the climate rather than remaining static. The
variable land use appears to enhance the proportionality between in-
crease in temperature and decrease in nitrogen concentration. In
terms of phosphorus concentration, considering variable land use intro-
duces a very significant change in the catchment response, where it ap-
pears to offset the effect of decreasing precipitation in increasing
phosphorus concentration. This effect appears more evident in the
rural reach 4, where the relative contribution of diffuse sources of phos-
phorus is higher than at reach 19, and thus the catchment is more sen-
sitive to changes in land use.

Figs. 9 and 10 also allow analysing the spatial patterns of the catch-
ment response. In terms of nitrate concentration, themodel results sug-
gest that the upper Thames is more sensitive to changes in climate than
the lower Thames, while for phosphorus concentration the opposite ef-
fect is observed. Additionally, the sensitivity of the response to the
drivers of change considered in this study is different depending on
the sub-catchment. For example, in the lower Thames nitrate concen-
tration seems to be less sensitive to changes in precipitation than in
the upper Thames, as the gradient of the response surfaces shows.

4.3. Likelihood of water quality changes

The response surfaces shown in Figs. 9 and 10provide an assessment
of the system sensitivity to some drivers of change, but do not offer any
information on the likelihood of the simulated changes in water quality
happening in the future. Nevertheless, climatic model outputs can
mate (sub-catchments drained by the River Thames from reach 4 to reach 19 – Thames at
es (bold lines every 10% land use fraction, thin lines every 2.5%).



Fig. 9. Response to climate variability on thewater quality of theRiver Thames at Farmoor – reach 4. The black dots represent the space defined by theUKCP09 change factors for the 2040s.
The black lines are surface contour lines (every 0.5 mg l−1 for nitrate, every 0.04 mg l−1 for phosphorus).
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provide a value of likelihood of the drivers of change considered. In Figs.
9 and 10, a white-shaded area is shown on each of the response sur-
faces, indicating the area defined by 10,000 combinations of UKCP09
precipitation and temperature change factors for the 2040s, under the
A1FI emission scenario. Computing the catchment response in terms
of water quality corresponding to each of these 10,000 pairs of annual
precipitation/temperature changes allows a probability function of the
expected changes in the river water quality to be derived.

In Fig. 11, the empirical probability distribution functions of expect-
ed average nitrate concentration change and expected average total
phosphorus concentration changes, corresponding to the 10,000
UKCP09 precipitation and temperature change factors, for both fixed
and variable land use are given. In all cases considering variable land
use introduces considerable changes in the final outcome. For reach 4,
the median expected change in the total phosphorus concentration
even shifts from positive to negative, thus highlighting the effect of
land use in mitigating climate change. This is reflected also in Table 2,
where the median expected changes and their standard deviations are
shown, based on the results depicted in Fig. 11.

Table 2 also shows the model results for 2060s and 2080s. The
change of the system response according to the UKCP09 for different
Fig. 10. Response to climate variability on thewater quality of the River Thames at Runnymede –
2040s. The black lines are surface contour lines (every 0.5 mg l−1 for nitrate, every 0.04 mg l−
time slices is also represented in Fig. 12, for reach 19, and considering
variable land use. The decrease in nitrate concentration and increase
in phosphorus concentration increase in time, due to a stronger signal
of warming, which reduces runoff and stream flow.

5. Discussion

The results of this study show thatmarket-driven adaptation of land
use to climate change and long-term climate variability can lead to sig-
nificant changes. An increase in precipitation across Europe appears to
lead to a large expansion of the total agriculture land represented by ar-
able and fertilised grassland within the Thames catchment, while a de-
crease in precipitation would not bring very significant changes to the
agricultural fraction of the Thames catchment. In contrast, the non-
fertilised grassland and forest fractions of the catchment are not subject
to significant changes, unless both precipitation and temperature in-
crease sharply.

In the Thames catchment, this translates into an expansion of
fertilised grassland at the expense of arable land. This is in apparent con-
tradictions with the findings of Olesen and Bindi (2002), who stated
that global warming is expected to lead to the expansion of suitable
reach 19. The black dots represent the space defined by theUKCP09 change factors for the
1 for phosphorus).



Fig. 11. Probability distribution function of expected changes in water quality (average concentration of nitrate and total phosphorus), according to the UKCP09 change factors for the
2040s, for two reaches of the River Thames (reach 4 – Thames at Farmoor and by reach 19 – Thames at Runnymead).
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cropping areas in the North of Europe, although the Thames catchment
is situated in thewarmest and driest area of the UK, with Fig. 3 showing
expansion of arable areas in the Baltic states, Republic of Ireland, Scot-
land and southern Scandinavia. However, the IMPRESSIONS IAP model
used in this study simulates land use based on a range of trade-offs be-
tween multiple sectors and considers production and demand across
Europe as a whole, assigning land use based on resulting profitability.
The model results do not indicate that the Thames catchment (or the
UK) becomes unsuitable for crops under warming scenarios, but that
they become less profitable compared to their cultivation in other
areas in Europe or compared to other land use types in the catchment.
In the Thames catchment the increase in arable land in other areas of
Europe in response to climate change alone appears to be themain driv-
er of land use change, leading to a reduction in the profitability of agri-
cultural land within the catchment. However, studies investigating the
combined impacts of climate and socio-economic change (such as
Table 2
Median values and standard deviations of the expected changes (%) in water quality according

Water quality variable Time slice Land use Rea

Me

Average nitrate concentration 2040s Fixed land use −2
2040s Variable land use −4
2060s Fixed land use −3
2060s Variable land use −7
2080s Fixed land use −4
2080s Variable land use −8

Average total phosphorus concentration 2040s Fixed land use 6.9
2040s Variable land use −3
2060s Fixed land use 10.
2060s Variable land use −1
2080s Fixed land use 12.
2080s Variable land use 0.0
population, dietary preferences, GDP, and the level of food imports)
on European landuse allocation have shown major divergence in land
use allocation between socio-economic scenarios (Harrison et al.,
2014) and a significant decrease in certainty of land use change
(Holman et al., 2016). A broader range of land use change outcomes in
the Thames catchment would therefore be likely under future socio-
economic scenarios associatedwith changed European agricultural pro-
ductivity, food demand and trade relationships.

Olesen and Bindi (2002) report potential implication of nutrient
leaching due to the impact of global warming on agriculture. Nutrient
pollution is the result of the combination of diffuse and point sources
from a variety of land uses and interactions. For example, in the upper
Thames fertilised grassland is themain land use, while intensively culti-
vated land is secondary; in the lower Thames agriculture is predomi-
nant, but with important proportions of forest land. The co-evolution
of this mosaic of land uses and their implications on water quality
to the UKCP09 projections for the 2040s, 2060s and 2080s.

ch 4 Reach 19

dian change Standard deviation Median change Standard deviation

.2 0.8 −1.4 0.5

.9 1.4 −4.8 1.0

.3 1.2 −2.1 0.7

.0 2.1 −6.3 1.4

.2 1.5 −2.8 0.9

.7 2.3 −7.6 1.5
5.9 11.8 8.2

.7 5.0 −1.4 7.3
4 7.6 16.7 9.5
.8 6.4 2.6 8.5
4 9.5 19.1 11.3

8.4 4.7 10.2



Fig. 12. Probability distribution function of expected changes inwater quality (% change in average concentration of nitrate and total phosphorus), according to theUKCP09 change factors
for the 2040s, 2060s and 2080s for reach 19 (Thames at Runnymead), with variable land use.

828 G. Bussi et al. / Science of the Total Environment 590–591 (2017) 818–831
could not be evaluated without using mathematical models (Tong and
Chen, 2002). This study shows a methodology that couples a land use
model with a water quality model to assess dynamically the impact of
climate change on the nutrient concentration of the River Thames. It is
clear from Figs. 9 and 10 that the co-evolution and adaptation of land
use to changes in climate is a key factor in nutrient export towards the
river system, and must be taken into account. Furthermore, the results
of the present study suggest that the impact of climate change alone
will be to enhance phosphorus concentration during low flows, similar-
ly to what was found by both Crossman et al. (2013a, 2013b) and Bussi
et al. (2016b).

In terms of nitrate concentration, Jin et al. (2012) also provided cli-
mate change impact estimates in the River Thames catchment, using
the INCA model in a top-down frame (i.e., coupling the water quality
model with climate model projections), reporting increased river ni-
trate concentration in winter and decreases in summer, following wet-
ter winters and drier summers. These findings also agree with the
results of the present study, which pointed to a similar response of the
Thames catchment to increases and decreases in precipitation. In anoth-
er study, Ferrier et al. (1995) found that Climate change will alter flow
regimes, temperature and nitrogen mineralization patterns in the
River Don (Scotland). They found that increasedmineralization of nitro-
gen in the soil will be triggered by climate change, but also that nitrate
concentrations will be reduced slightly by the increased temperatures
and decreased summer flows, both of which enhance denitrification
processes.

Concerning land use impacts onnitrate concentration in the Thames,
Howden et al. (2010) reported that the main driver of historical ob-
served change is land use, and that long-term changes in agricultural
land use are more important that recent changes in farming practice.
They found that once a step-change in land use intensification (princi-
pally a shift from low intensity grassland to highly intensive arable agri-
culture) has occurred, nitrate concentrations remain intractably high
despite large-scale and sustained management intervention. These
changes are irreversible unless a significant area of arable land is con-
verted to low intensity grassland or forest (Howden et al., 2010). In
their paper, Howden et al. (2010) also urged caution before
implementing policies (usually market-driven) that encouragemassive
land conversions as their impact on fresh and marine waters could per-
sist for many decades. Similarly, Whitehead et al. (2002), after
reconstructing the past land use changes in the River Kennet catchment
(a tributary of the Thames), found that a sharp increase in agricultural
land since the 1930s caused a major shift in the short term dynamics
of nitrate in the river with increased river and groundwater concentra-
tions caused by non-point source pollution from agriculture. In light of
these statements, themethodology described in the present study offers
a robust tool to analyse the long-term impact of large changes in arable
land extension due to variations in crop productivity and demand, rath-
er than to short term changes in farming practices.

One of the main contributions of this study is the assessment of the
co-evolution of the land use with changes in climate. Figs. 9 and 10
show the differences in the response if the variation of land usewith cli-
mate is taken into account or not. In general, there is an inverse relation-
ship between temperature and nitrate concentration, because an
increase in temperature causes increased evapotranspiration and re-
duced runoff from agricultural soils, as well as increased instream deni-
trification due to lower flows. If variable land use is introduced, this
relationship is enhanced, because with an increase in temperature the
total arable area is reduced (Fig. 9 and 10), and thus the sources of ni-
trate are further reduced. This is a synergistic impact of land use and
warming on nitrate concentration in rivers.

In terms of phosphorus, temperature has the opposite effects, i.e. it
increases the phosphorus concentration in the river, because it reduces
the river flow which is used to dilute the effluent coming from sewage
treatment plants. If variable land use is introduced, the reduction of ar-
able agriculture caused by increased temperature causes a decrease of
phosphorus inputs from agriculture (principally due to erosion and sed-
iment transport from seasonal bare soil surfaces), and partially compen-
sates for the increase in phosphorus due to lower flows. In this case, the
land use adaptation to climate is mitigating the negative effects of cli-
mate change on phosphorus concentration. This is especially evident
for reach 4 under the UKCP09 climate projections (Fig. 11, bottom-left
plot). In this sub-catchment, the model results show that land use can
reverse the impact of climate change.

Fig. 6 shows that the results of this methodology strongly depend on
the location. Different catchments experience very different alterations
in their land use under the same combinations of precipitation and tem-
perature change. Therefore, the results of this study cannot be extrapo-
lated to other catchments. Nevertheless, they can be informative of the
interplays that can occur between land use and climate and their effects
on agriculture and water quality, such as for example the expansion or
reduction of arable land due to changes in climate in different regions
of the world. Additionally, this paper shows that for catchment like
the Thames, where the human-affected land is predominant, socio-
economic drivers of change must be considered, and they need to be
taken into account at a very large (continental or world) scale.

A key limitation of this study is that it did not take into account pol-
icy responses to changes in nutrient concentration, such as for example
the implementation of buffer strips to retain the excess of nutrients
moving towards the river network. Buffer strips were taken into ac-
count in the INCA parameterisation, through the in-channel module of
the INCA model versions. Some example of its applications are
Crossman et al. (2013a, 2013b), Flynn et al. (2002) and Whitehead
et al. (2010). However, the coarse resolution of the land use model did
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not allow accounting for variations in the buffer strips to respond to
changes in the river nutrient concentrations. This is surely a very impor-
tant point that must be addressed in future investigations.

Although a comprehensive analysis of the model uncertainty was
not among the aims of this paper, it is important to analyse the sources
of uncertainty that affects the results of this study. In particular, the
modelling chain employed in this study (a “cascade” of two models:
IAP and INCA) propagates errors from the inputs down to the outputs.
The uncertainty of the INCA model was assessed separately in different
studies, such as for example Raat et al. (2004), who pointed out the
problem of equifinality and suggested a multi-objective calibration ap-
proach, as well as the use of frequent measurements (fortnightly fre-
quency) as reference values for calibration. Dean et al. (2009) applied
a generalised likelihood uncertainty estimation (GLUE) framework to
the INCA-P model, and concluded that the uncertainty due to the
model structure and parameterisation was similar to the uncertainty
of the measured values of total phosphorus in the river. Rankinen
et al. (2006) also applied a GLUE approach to evaluate the uncertainty
of the INCA-N model results, integrating “soft data”, or experimental
knowledge of the processes, into the calibration procedure. Bussi et al.
(2016a, 2016b) also showed a sensitivity analysis of the sediment ver-
sion of INCA (included in INCA-P), providing an estimation of the para-
metric uncertainty of the model results. The parametric uncertainty of
the whole combination of these two models was not quantified in this
study, although it can be assessed qualitatively.

This modelling combination involves around 25–30 influential pa-
rameters, based on previous uncertainty assessments (Bussi et al.,
2016a; Dean et al., 2009; Futter et al., 2014; Jackson-Blake and Starrfelt,
2015; Raat et al., 2004; Rankinen et al., 2006;Whitehead et al., 2015). As
stated for example by Skeffington et al. (2007), in amodelling chain the
output uncertainty is typically less than the summed uncertainty in the
input parameters. It can be reasonably stated that the final uncertainty
of themodelling chain is of the sameorder ofmagnitude than the uncer-
tainty of the single models. This level of uncertainty is normally consid-
ered acceptable for climate change and land use change analysis in the
literature, in particular when reproducing highly uncertain processes.
It is also worth pointing out that uncertain models can still provide ex-
tremely useful information for planners and managers, especially for
scenario analysis where the factors of change in the variable of interest
are used rather than the absolute values of those variables (Cosby et al.,
1986). Furthermore, the model parametric uncertainty must be consid-
ered along with other sources of uncertainty, among which the most
important is probably the climate scenarios uncertainty. This is ac-
knowledged to be a very relevant source of uncertainty in climate
change impact assessment studies (Kay et al., 2009; Prudhomme and
Davies, 2009a, 2009b; Wilby and Harris, 2006). Here, climate models
were not used in the modelling cascade, but they were still employed
to define the “probable” area of the response surfaces. UKCP09 projec-
tions were developed to include a very broad range of possible future
climate outcomes, given the large uncertainty affecting climate model
results. Therefore, it is reasonable to think that the ranges of water qual-
ity variations due to changes in average precipitation and temperature
include both the uncertainty regarding future climate and themodelling
chain parametric uncertainty (the latter probably being much lower
than the former). Nevertheless, as stated before, a much more compre-
hensive study is needed to quantify withmore accuracy the uncertainty
of the modelling chain results.

Lastly, the methodology used in this study has certain limitations
that must be accounted for and stressed. The scenario neutral method-
ology, as stated in other studies (Bussi et al., 2016b; Prudhomme et al.,
2010) is based on selecting the main drivers of change given a selected
variable. In this case, the variable is water quality and the drivers of
change are changes in annual precipitation and changes in annual tem-
perature. Other drivers of changes could be considered. For example,
Prudhomme et al. (2010) considered alterations in the seasonality of
precipitation, and Bussi et al. (2016a) took into account changes in
extreme precipitation. In this paper we did not address the changes in
nutrients caused by climatic changes other than variations in the aver-
age precipitation and temperature. Clearly, this is a very important lim-
itation, given that changes in extreme events and seasonality can also
cause alterations in the water quality, independently from the varia-
tions in the mean. However, in this paper we only analysed changes in
the long-term mean of nutrient concentration, and thus it seems rea-
sonable to consider only alterations in the average climate. This limita-
tion should also be assessed in future developments of this study.

6. Conclusions

An assessment of the impact of long-term climatic changes on land
use and water quality was carried out, using the INCA water quality
model within a scenario-neutral framework, for the River Thames
catchment (UK). Contrary to most of the previous studies in the field
of climate and land use/land cover changes impact assessment, in the
present study the land use was not treated as a static parameter of the
catchment, but rather as a dynamic variable, which varies depending
on the long term response of European agriculture and forestry to cli-
mate change (especially precipitation and temperature).

Using a land use allocation model coupled with a water quality
model, this study demonstrated a methodological approach to evaluate
the joint impact of climate and landuse changes onwater quality, taking
into account the autonomous adaptation of land use and agriculture to a
changing climate. The European scale of application of the land use allo-
cation reflects an appropriate scale for the representation of food and
timber production systems andmarkets. This study also proved the im-
portance of such a dynamical approach in reproducing land use re-
sponse to climate, showing that considering this factor can, in some
circumstances, lead to results that are completely different than if the
land use adaptation is not considered.

This study showed how temperaturewarming is expected to cause a
shift from arable land to fertilised grassland in the River Thames catch-
ment, although this pattern could be slightly altered depending on the
long-term variations of the annual precipitation. Climate change is ex-
pected to decrease the average concentration of nitrate in the River
Thames, due to increased evapotranspiration and reduced runoff from
agricultural soils, as well as increased denitrification in the streams
caused by lower flows,while it is expected to increase the average phos-
phorus concentration, due to a reduction of the river flow that is neces-
sary to dilute effluents from sewage treatment works. Land use change
is likely to enhance the reduction in nitrate concentration, due to a re-
duction of the fertilised agriculture area, and it is likely to mitigate the
phosphorus concentration increase, especially in the upper Thames, al-
though less so in the lower Thames,where the contribution fromdiffuse
sources of phosphorus (e.g., agriculture) are relatively small compared
with the contribution frompoint sources (effluents). This study demon-
strated the importance of representing catchment land use change as a
dynamic variable responding to climate change in future water quality
assessments, considering land use allocation in a way that reflects
large-scale market supply and demand.
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